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Abstract—Studies have shown that video streaming is one of 

prominent cellular applications. Apart from improved network 

capacity, its growth is also catalysed by usage of smart-devices. It 

is therefore important for service providers to understand how 

key characteristics of smart devices, network and video 

simultaneously influence users’ Quality of Experience (QoE). 

This paper presents a mapping function which was derived after 

a series of subjective experiments to study users’ responses on 

video streaming QoE conducted over a wireless test-bed. It 

achieved a good prediction accuracy of different video types 

streamed in a wireless environment. 
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I.  INTRODUCTION 

Mobile video has experienced an exponential growth in 
cellular networks due to the advancement of end-device and 
network technologies. According to Ericsson Mobility Report 
of 2016, there were 3.9 billion smart devices connected to 
cellular networks worldwide by then, and by 2022 the number 
is expected to reach 6.9 billion. Similarly, it is projected that 
mobile subscription in Enhanced Data rates for GSM Evolution 
(EDGE) shall have decreased at a Compound Annual Growth 
Rate (CAGR) of 20%, while in Wideband  Code Division 
Multiple Access (WCDMA) and Long Term Evolution (LTE) 
shall increase at a CAGR of 5% and 20% respectively; between 
2016 and 2022 [1]. Moreover, Cisco Visual Networking Index 
(VNI) report of 2017 forecasts that mobile video will grow at a 
CAGR of 54% between 2016 and 2021 generating 38 exabytes 
[2]. From these observations, it is evident that mobile video is 
accelerated by the presence of smart devices and high capacity 
networks. Nevertheless, video streaming has found significant 
applications in various aspects such as tele-health, e-learning 
and entertainment [3]–[5]. Furthermore, as such services 
increase in telecommunication market, their success, however 
depends on users’ satisfaction. Therefore, it is important to 
understand end-users’ QoE based on key factors in multimedia 
services delivery process so that necessary optimization steps 
can be done. 

The International Telecommunication Union (ITU) defines 
QoE as the overall acceptability of an application or a 
particular service as perceived subjectively by the end-users. It 
includes the complete end-to-end system effects (client, 
terminal, network, service infrastructure, etc.) and influenced 
by user expectations and context [6]. Moreover, Möller 
maintains that QoE is the degree of delight or annoyance of the 
user by an application or service, in the context of 
communication services, and it is influenced by content, 
network, device, application, user expectations and goal, and 
context of use [7], [8]. Since QoE is a measure of users’ 
satisfaction, several researchers have devoted time to find 
models which can quantitatively map it to Quality of Service 
(QoS) parameters. As an attempt to model QoE, researchers 
have given an immense attention to the mapping of QoE to 
either network or content QoS parameters alone [9]–[12]. 
Nonetheless, QoE is also affected by other factors such as 
devices characteristics, on top of network and video 
characteristics. Hence, it is important to formulate a mapping 
function which takes in the effects of other impairments, apart 
from network and/or video impairments. 

This paper therefore investigates the effects of some key 
characteristics of smart devices, network and video, and then 
formulates a mapping function to predict video streaming QoE. 

The contributions of this paper are twofold: 

i. To investigate the effects of key variables of smart-
device, network and video characteristics on 
video streaming QoE. 

ii. To derive a function which maps smart-device, 
network and video characteristics to QoE. 

This paper is organized as follows: Section II provides a 
review of related works and shows the research gap. Section III 
describes our experimental study describing the materials and 
methods used. Section IV describes the data analysis 
techniques used. Section V presents the model derivation 
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process, parameters estimation and validation; and lastly, 
section VI presents the conclusion.  

II. RELATED WORK 

The need to map end-users’ QoE to measurable QoS 
parameters has been an active study in the field of multimedia 
services and networked systems. There are many efforts mostly 
looking into objective techniques to map network and video 
QoS parameters to users’ QoE. A work reported in [10] 
proposes a logarithmic relationship to map users’ QoE to 
network QoS parameters for web browsing, e-mail and 
downloads applications. In [11], authors presented a correlation 
neural model trying to map 3G network QoS parameters to 
QoE for web browsing, video streaming and download 
applications. Furthermore, in [13] a generic formula which uses 
an exponential function to map users’ QoE to QoS parameters, 
known as IQX hypothesis was proposed. The formula relates 
the changes of QoE with respect to QoS and to the current level 
of QoE. Nonetheless, the work reported in [14] proposes a 
logistic function to predict video QoE based on network delay, 
packet loss, jitter and throughput. Some researchers have tried 
to introduce hybrid models by considering parameters from 
other factors apart from network. A fuzzy logic model reported 
in [15] considered network and application layers QoS 
parameters to predict QoE of video contents. Similarly, studies 
reported in [16] and [17] propose a fuzzy logic prediction 
model based on content and network QoS parameters. It is 
observed that existing mapping models tend to consider either 
network and/or content characteristics but not including smart-
devices characteristics. Moreover, a number of researchers 
agree that device features can significantly affect viewing 
experience [18]–[20]. 

Therefore, this study proposes a function which 
simultaneously maps the effects of smart device, network and 
video QoS parameters to users QoE in order to reflect real 
scenario users’ experiences of video streaming application. 

III. EXPERIMENTAL STUDY 

A. Video Content Selection 

The video contents from soccer, movie and news clips were 
extracted from YouTube channel to represent fast moving 
(FM), medium moving (MM) and slow moving (SM) contents 
respectively, which differ in spatial and temporal 
characteristics [21], [22]. All clips were extracted from high 
definition contents of H.264 format, with 1280 x720 pixels, 
frame rate 30fps and bit rate 2048kbps. Using adobe media 
encoder the durations of each video were limited to 10 seconds 
in order to reduce boredom during experimentation. Fig.1 
indicates the images of video clips used during subjective 
experiments. 

 
Fig. 1. Images of video used in experiments  

B. QoS Parameters 

The chosen QoS parameters were selected from device, 
network and video contents. The parameters screen size and 
resolution were selected from smart devices and presented in 
terms of Pixel Density Index (PDI) which is the ratio of 
resolution to screen size. From the network, delay (DL) and 
Jitter (JT) were selected while from video contents, the content 
type (CT) and bit rate (BR) were selected while frame rate was 
fixed at 30fps as shown in Table I. 

TABLE I.  QOS PARAMETERS 

Parameter Values 

Content type (CT) SM, MM and FM video contents 

Bit rate (BR) 0.192Mbps, 0.512Mbps, 2.048Mbps 

Jitter (JT) 5ms, 20ms, 50ms 

Delay (DL) 10ms, 150ms, 300ms 

Pixel density index (PDI) 149ppi, 264ppi, 320ppi 

 

C. Subjective Experiments 

Subjective experiments were designed using Taguchi 
method. It is a multi-factor experimental method whereby the 
effects of more than one variable with more than two levels can 
be studied at the same time [23]. This method has been widely 
used to evaluate the quality of engineering processes and 
products [24]. Its strength is due to the use orthogonal array 
which determines minimum number of experiments necessary 
to test experimental conditions [25]. This paper investigated the 
effects of five variables on video streaming QoE, each varied at 
3-levels as shown in Table I. By using factorial design, this 
study would require 243 experiments to tests all 35 variables 
combinations. Nevertheless, by using Taguchi method, only 27 
experiments are sufficient to investigate necessary variables 
combinations as depicted in Table II. 

TABLE II.  VARIABLES COMBINATIONS 

Experiment CT PDI BR DL JT 

1 FM 149 2.048 10 5 

2 FM 149 2.048 10 20 

3 FM 149 2.048 10 50 

4 FM 264 0.512 150 5 

5 FM 264 0.512 150 20 

6 FM 264 0.512 150 50 

7 FM 320 0.192 300 5 

8 FM 320 0.192 300 20 

9 FM 320 0.192 300 50 

10 MM 149 0.512 300 5 

11 MM 149 0.512 300 20 

12 MM 149 0.512 300 50 

13 MM 264 0.192 10 5 



14 MM 264 0.192 10 20 

15 MM 264 0.192 10 50 

16 MM 320 2.048 150 5 

17 MM 320 2.048 150 20 

18 MM 320 2.048 150 50 

19 SM 149 0.192 150 5 

20 SM 149 0.192 150 20 

21 SM 149 0.192 150 50 

22 SM 264 2.048 300 5 

23 SM 264 2.048 300 20 

24 SM 264 2.048 300 50 

25 SM 320 0.512 10 5 

26 SM 320 0.512 10 20 

27 SM 320 0.512 10 50 

 

D. Emulation Procedure 

In this study, the combined effects of various QoS 
parameters from device, network and video factors on video 
streaming QoE were investigated. Hence it required an end-to-
end video streaming QoE evaluation process. Thus, a wireless 
network test-bed was designed and used for emulating a 
wireless network behaviour using network emulator (netem) in 
the linux kernel of Ubuntu 10.4 installed in a two port 
computer. 

The variables DL and JT were varied by using netem 
according to experimental sequence described in Table II. 
Also, participants watched video contents stored in the local 
server by using smart-devices with features described in Table 
III. The experiments followed the absolute category rating 
(ACR) method as recommended by ITU whereby viewers were 
allowed to view video clips and rate QoE at the end of each 
one [26]. The rating criteria were the initial time to play, the 
rate of video interruptions while playing, and general video 
clarity. The process was repeated for all 44 participants. 

TABLE III.  DEVICES FEATURES 

 Device 1 Device 2 Device 3 

Screen size 10.1’ 5’ 5.5’ 

Resolution 800x1280 1182x720 1280x720 

PDI 149ppi 264ppi 320ppi 

Processor 1.2 GHz 1.3GHz 1.3GHz 

Device model Galaxy Tab 4 Techno C5 Techno J8 

 

IV. DATA ANALYSIS 

In order to establish statistical relationship between 
dependent variables and QoE, the 5-way analysis of variance 
(ANOVA) was conducted on the QoE dataset obtained from 
subjective experiments [27]. All 1,188 test conditions (44 

participant x 27 conditions) were tested in order to determine 
the effects of all five parameters on QoE together with their 
combined interaction effects. The interpretation of results from 
ANOVA is such that; a parameter with a p-value small than 
0.05 indicates that its effect on QoE is significant [27]. From 
this study, the individual effects of BR, DL and CT were found 
to be significant on QoE while those due to PDI and JT were 
not. Nevertheless, the interaction effects of PDI and BR, PDI 
and DL were significant on QoE. Furthermore, the interaction 
of JT and BR with JT and CT were found to affect QoE 
significantly. Therefore the effects of all five variables were 
considered as significant on video streaming QoE. 

The most important parameter affecting QoE was CT 
because its effect was the highest of all. The BR was the 
second most effective parameter which influenced the effects 
of PDI. This means, the effects of low PDI devices can be 
reduced by videos of high bit rate. The third most effective 
parameter was DL, followed by JT and the PDI. Moreover, the 
effects of JT depended on CT and DL. Therefore reducing link 
DL can reduce the impact of JT on video streaming QoE. 
Generally, ANOVA has revealed the significance of each 
variable in predicting QoE; which guided the derivation 
process of a mapping function. 

V. DERIVING A MAPPING FUNCTION 

A. Input and Output Responses 

The inputs considered in QoE modelling were BR, DL, PDI 
and JT, while CT was used as an intermediate variable, whose 
effects were accounted for using different video types during 
the modelling process. Fig. 2 and Fig. 3 show the variations of 
QoE due to different inputs. 

 
Fig. 2. Plot of QoE vs. BR and PDI  

 
Fig. 3. Plot of QoE vs. JT and DL  

The following assumptions were then made to represent the 
relationship between each variable and its corresponding QoE 
variation. 

1 1( ) ln( )f BR β BR  (1) 

2 2( )  f PDI β PDI  (2) 



3 3( )f DL β DL    (3) 

4 4( )  f JT β JT   (4) 

Where 1β , 2,β , 3β  and 4β  are constants while 1( )f BR , 

2 ( )f PDI , 3( )f DL and 4 ( )f JT  are QoE variations due to BR , 

PDI , DL  and JT  respectively.  

The generalized linear equation was adopted to integrate 
individual functions into one function as shown in (5). 

1 1 2 2 3 3( ) ( ) ( ) ....y f x f x f x ε      (5) 

Substituting (1), (2), (3) and (4) into (5), then 

1 2 3 4ln( )y β BR β PDI β DL β JT ε         (6) 

1
( )

1 y
g y

e



        (7) 

Substituting (6) into (7) in order to normalize its output 
between 0 and 1, it follows that 

1 2 3 4( ln( ) )

1
( )

1
β BR β PDI β DL β JT ε

g y
e
       




  (8) 

31 2 4ln( )

1
( )

1
β DLβ BR β PDI β JT ε

g y
e e e e e
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

    
    (9) 

Let 2βe γ


 ,  3 4β β β   and εe δ   be the constants then;  

2β PDI PDIe γ
 

   (10) 

3 4 ( )β DL β JT β DL JTe e e
         (11) 

εe δ    (12) 

By using exponential function properties,  

1
1 1ln( ) ln( )

ββ BR βBRe e BR
 

    (13) 

Substituting (9), (10), (11) and (12) into (8), 

1 ( )

1
( )

1
β PDI β DL JT

g y
δ BR γ e

  


   
 (14) 

However, the normalized value of a function is also defined as, 
*

min

max min

( )
y y

g y
y y





  (15) 

where, y is an average function output, maxy  is a maximum 

output of a function, miny is a minimum output of a function, 

and is a normalized function output. 

 Since *y and ( )g y  are both normalized values of y , (14) 

and (15) are equated. In this study, maxy =5 and miny =1 

presenting the maximum and minimum values of QoE 
respectively. 

1

min

( )
max min

1

1
β PDI β DL JT

y y

y y δ BR γ e
  




    
 (16) 

Finally, the mapping function is presented by 

1 ( )

4
1

1
β PDI β DL JT

y
δ BR γ e

  
 

   
 (17) 

B. Parameter Estimation 

The function parameters in (17) were estimated using 
Gauss-Newton algorithm through Minitab 17.1.0 software. The 
dataset used for parameter estimation were collected from a 
subjective experiment by using the combination of FM, MM 
and SM video contents. The algorithm estimated parameters of 
the function which attained the minimum root mean square 
error (RMSE) between users and model predicted QoE in each 
content type. Table IV describes the function parameters 
estimated in fours settings of video contents. The function 
parameters differ due to variation of users’ responses 
influenced by content characteristics. 

TABLE IV.  FUNCTION PARAMETERS AND EVALUATION 

 Parameters Estimates   

CT δ  1β  γ  β  RMSE  R  

FM 0.0344 0.5340 1.0114 6.7601 0.134 93.2% 

MM 0.0500 -1.199 1.0064 7.6606 0.135 91.7% 

SM 0.0414 -1.034 1.0064 7.5464 0.216 75.2% 

All contents 0.4737 -0.673 1.0003 4.0347 0.228 90.1% 

  

C. Function Testing and Validation 

 

0 5 10 15 20 25 30
1.5

2

2.5

3

3.5

4

4.5

Experimental conditions

Q
o

E
 i

n
 M

O
S

 

 

Model predicted QoE

User QoE score

 
Fig. 4. Line graph showing predicted and user QoE scores 

The mapping function (17) was used to predict QoE of 
untested conditions in three content types using parameters 
described in Table IV. Subjective experiments were then 
conducted to collect users’ QoE due to untested conditions. 
The derived function was then validated using R2 correlation 
and root mean square error (RMSE) in each content type. The 
function attained R2 correlation of 93.2% and RMSE of 0.134 
in FM contents, R2 correlation of 91.7% and RMSE of 0.135 in 
MM contents and  R2 correlation of 75.2% and RMSE of 0.216 
in SM contents. Moreover, the function attained R2 correlation 
of 90.1% and RMSE of 0.228 in mixed contents of FM, MM 



and SM as described in Table IV. The accuracy of the function 
was observed to decrease from FM, MM to SM contents. 
Moreover, the function maintained a high accuracy with QoE 
predictions of combined contents as described in Fig.4 and 
Fig.5. 
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Fig. 5. Predicted QoE vs User QoE 

 

VI. CONCLUSION 

In this paper, a function to map QoS parameters to users 
QoE of video streaming in wireless networks was derived. The 
formulae consolidates the effects of key QoS parameters from 
smart-device, network and video contents. The effects of QoS 
parameters were studied through a wireless network test-bed in 
a laboratory. Subjective experiments were conducted to collect 
users QoE due to the changes of CT, BR, DL, JT and PDI. The 
data collected was analysed by using a 5-way ANOVA to 
statistically establish the impact of each parameter and to 
identify the most influential parameters. This study found that 
CT had the highest impact on QoE, followed by BR, DL, JT 
and PDI. Moreover, by basing on these findings a mapping 
function was derived and achieved a high prediction accuracy 
of 0.901 and RMSE of 0.228. 

Hence, the paper contributes to the on-going research in the 
field of study by proposing a mapping function which 
consolidates the effects of variables from smart-device, 
network and video contents; by considering simultaneous   
effects of key variables on video streaming QoE. Nevertheless, 
future work should focus on the effects of parameters which 
were not considered in this study. 
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